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Problem:
• Half of the world’s languages might be extinct by the next century1
• Transcription process is the biggest bottleneck in language documentation

• ~2weeks to transcribe 1-hour audio2

• Lack of field linguists
• Lack of funding

Solution:
• Transcription with the state-of-the-art automatic speech recognition 

(ASR) model (like Siri, Alexa, or YouTube’s automatic subtitles)
• This study shows a successful case study of building an ASR model for 

transcribing the Kichwa language with limited audio resources

Abstract

See Table 1.
• Best score: 4 episodes, 30 epochs (~92% correct output)9

• Less than 1 hour of training data!
• The more data we have, the better accuracy we get
• Too many epochs can harm the accuracy (overfitting)
485 sec. for transcribing 820 sec. test data

Introduction

Objective: Fine-tuning the multilingual ASR model (Figure 2)
• Pre-trained model: Wav2vec2-large-xlsr-53, developed by Meta AI4

• Trained on 53 languages 
• Able to represent multilingual speech
• Connectionist Temporal Classification (CTC)

• Create the Kichwa dataset
• Radio program in Kichwa (Creative Commons BY-SA)5
• Add the transcription with ELAN
• Python code to trim and save each audio–annotation segment6

• Train the model with 1–4 episodes (~14 min. per episode)7
• With different epochs (epoch: number of training cycles)

• Trained on 2 GPUs (Quadro RTX 6000), max. ~63 mins.

Evaluation:
• The 5th episode is reserved for the test dataset
• The accuracy metric is Character Error Rate (CER)8

• 𝐶𝐸𝑅 = !"#"$
%

(S: substitutions, D: deletions, I: insertions, N: reference string length)

• E.g., ”language” vs. “linguam”: S=1, D=2, I=1, N=8 → CER = 4/8 = 0.5

Methods
From the Results:
• We can develop a good ASR system with 1-hour training data!
• A possible workflow:

1. Manual annotation (1 hour)
2. Train an ASR model
3. Get a draft transcription
4. Post-edit
5. Re-train the model (repeat from 3.)

1-hour audio file would be transcribed in ~35.5 minutes
• EASY: Annotators can sip a cup of coffee during the process!
• FAST: Drastic acceleration compared to 2 weeks of manual transcription
• CHEAP: Audio doesn’t have to be of high quality

• Speakers can record their speech with their own device (e.g., via 
Whatsapp voice message; exportable to .wav)

• Flexibility for remote fieldwork

Discussions for future work
• How about more phonologically/orthographically complex languages?
• How about tonal languages?
• Can such a model be used for code-mixed speech?
• The ownership of the audio data must be carefully discussed with 

informants.
• How can this technology contribute to the local speaker community?

Limitations
• Some coding is necessary
• Model size is huge (~1.2GB)
• Access to GPUs is necessary (expensive!)

• These can be overcome by collaborations

Discussion

This study showed…
• A successful case study of developing a Kichwa ASR model for language 

documentation
• Only 1-hour audio is necessary to achieve >90% accuracy
• Feasible workload for field linguists

• Contribution to applications in Kichwa, an underrepresented language in 
technology

• Bridging between field linguistics and natural language processing (NLP)

Takeaways:
• NLP has great potential for language documentation!
• Call for collaborative works of linguistics and NLP

Concluding remarks

1 episode 2 episodes 3 episodes 4 episodes

20 epochs — 15.24 11.44 10.04

30 epochs — 12.11 11.56 8.16

40 epochs 18.29 13.65 10.24 8.29

Imbabura Kichwa:
• < Kichwa < Northern Quechua (Quechua II-B) < Quechua II < Quechua
• Spoken in the Imbabura Province of Ecuador
• Spoken by ~150,000 speakers3 (debatable; probably underestimated)
• Socially stigmatized; ongoing language shift to Spanish
• Few linguistic research works despite the size of the speaker community

Phonology and orthography
• Imbabura Kichwa phonology is relatively simple

• 16~20 consonants, 3 vowels3
• CV(C)

• Unified orthography for Ecuadorian Kichwa

Data
• No publicly available ASR model for Kichwa
• No ASR dataset

Results

Figure 1. Distribution of Ecuadorian Kichwa varieties3

Table 1. Comparison of Character Error Rates with different dataset sizes and epochs. The unit is %.
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Figure 2. Illustration of the workflow.
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